Maximal almost disjoint families and pseudocompactness of hyperspaces

نویسندگان

چکیده

We show that all Ψ-spaces associated to maximal almost disjoint families have pseudocompact Vietoris hyperspace if and only MAc(P(ω)/fin) holds. further study the question whether there is a family whose construct consistent example of size ω2<c not pseudocompact.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mrówka Maximal Almost Disjoint Families for Uncountable Cardinals

We consider generalizations of a well-known class of spaces, called by S. Mrówka, N ∪R, where R is an infinite maximal almost disjoint family (MADF) of countable subsets of the natural numbersN . We denote these generalizations by ψ = ψ(κ,R) for κ ≥ ω. Mrówka proved the interesting theorem that there exists an R such that |βψ(ω,R) \ ψ(ω,R)| = 1. In other words there is a unique free z-ultrafilt...

متن کامل

Confinitary Groups, Almost Disjoint and Dominating Families

In this paper we show that it is consistent with ZFC that the cardinality of every maximal cofinitary group of Sym(ω) is strictly greater than the cardinal numbers d and a.

متن کامل

Martin's axiom and almost disjoint families

Assuming Martin’s Axiom and א1 < 2 א0 , we show that, for any κ, λ < 20 and any almost disjoint family {ai : i < λ} of countable subsets of κ, there is a partition {pn : n ∈ ω} of κ so that pn ∩ ai is finite for each 〈i, n〉 ∈ λ × ω.

متن کامل

Cofinitary Groups, almost Disjoint and Dominating Families

In this paper we show that it is consistent with ZFC that the cardinality of every maximal cofinitary group of Sym(co) is strictly greater than the cardinal numbers D and a. ?

متن کامل

Invariance properties of almost disjoint families

We answer a question of Gracia-Ferreira and Hrušák by constructing consistently a MAD family maximal in the Katětov order. We also answer several questions of Garcia-Ferreira.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2022

ISSN: ['1879-3207', '0166-8641']

DOI: https://doi.org/10.1016/j.topol.2021.107872